403 research outputs found

    Inertial oscillations in a confined monopolar vortex subjected to background rotation

    Get PDF
    We study the axisymmetric inertial oscillations in a confined monopolar vortex under the influence of background rotation. By first focusing on the inviscid linear dynamics, and later studying the effects of viscosity and of a no-slip bottom, we characterize the effects of rotation and confinement. It was found that background rotation allows for oscillations outside the vortex core even with frequencies larger than 2O, with O the background rotation rate. However, confinement is necessary for the system to sustain oscillations with frequencies smaller than 2O. Through the analytical solution for a small perturbation of a Rankine vortex, we obtain five regimes where the oscillations are qualitatively different, depending on their frequency. Numerical results for the linear inviscid waves sustained by a Lamb–Oseen vortex show a similar behavior. The effects of viscosity are twofold: the oscillations are damped and the vortex sustaining the oscillations is modified. When a no-slip bottom is considered, a boundary layer drives a secondary motion superimposed on the inertial oscillations. In this case, the vortex is quickly damped, but the oscillations persist due to the background rotation

    3-D Perturbations in Conformal Turbulence

    Full text link
    The effects of three-dimensional perturbations in two-dimensional turbulence are investigated, through a conformal field theory approach. We compute scaling exponents for the energy spectra of enstrophy and energy cascades, in a strong coupling limit, and compare them to the values found in recent experiments. The extension of unperturbed conformal turbulence to the present situation is performed by means of a simple physical picture in which the existence of small scale random forces is closely related to deviations of the exact two-dimensional fluid motion.Comment: Discussion of intermittency improved. Figure include

    Infant Cognitive Scores Prediction With Multi-stream Attention-based Temporal Path Signature Features

    Get PDF
    There is stunning rapid development of human brains in the first year of life. Some studies have revealed the tight connection between cognition skills and cortical morphology in this period. Nonetheless, it is still a great challenge to predict cognitive scores using brain morphological features, given issues like small sample size and missing data in longitudinal studies. In this work, for the first time, we introduce the path signature method to explore hidden analytical and geometric properties of longitudinal cortical morphology features. A novel BrainPSNet is proposed with a differentiable temporal path signature layer to produce informative representations of different time points and various temporal granules. Further, a two-stream neural network is included to combine groups of raw features and path signature features for predicting the cognitive score. More importantly, considering different influences of each brain region on the cognitive function, we design a learning-based attention mask generator to automatically weight regions correspondingly. Experiments are conducted on an in-house longitudinal dataset. By comparing with several recent algorithms, the proposed method achieves the state-of-the-art performance. The relationship between morphological features and cognitive abilities is also analyzed

    Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL

    Get PDF
    T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. Here we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identify novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor/cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM toward a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution.Peer reviewe

    Searching for the Majority: Algorithms of Voluntary Control

    Get PDF
    Voluntary control of information processing is crucial to allocate resources and prioritize the processes that are most important under a given situation; the algorithms underlying such control, however, are often not clear. We investigated possible algorithms of control for the performance of the majority function, in which participants searched for and identified one of two alternative categories (left or right pointing arrows) as composing the majority in each stimulus set. We manipulated the amount (set size of 1, 3, and 5) and content (ratio of left and right pointing arrows within a set) of the inputs to test competing hypotheses regarding mental operations for information processing. Using a novel measure based on computational load, we found that reaction time was best predicted by a grouping search algorithm as compared to alternative algorithms (i.e., exhaustive or self-terminating search). The grouping search algorithm involves sampling and resampling of the inputs before a decision is reached. These findings highlight the importance of investigating the implications of voluntary control via algorithms of mental operations

    The Role of Attention in a Joint-Action Effect

    Get PDF
    The most common explanation for joint-action effects has been the action co-representation account in which observation of another's action is represented within one's own action system. However, recent evidence has shown that the most prominent of these joint-action effects (i.e., the Social Simon effect), can occur when no co-actor is present. In the current work we examined whether another joint-action phenomenon (a movement congruency effect) can be induced when a participant performs their part of the task with a different effector to that of their co-actor and when a co-actor's action is replaced by an attention-capturing luminance signal. Contrary to what is predicted by the action co-representation account, results show that the basic movement congruency effect occurred in both situations. These findings challenge the action co-representation account of this particular effect and suggest instead that it is driven by bottom-up mechanisms
    corecore